Machine Learning

What If a Program could Program Itself?

Abdus Salam Azad

Machine Learning

A way to automatically "write" a "program" based on input and outputs

```
"write" => "Learn"
```

"program" => can be a python program, a neural network, etc...

In this lecture would simply touch a few basic concepts...

Machine Learning

- In traditional programming, we are given a problem statement and a few input-output examples
 - We "figure out" the "logic" manually
 - o and the we manually write the program
- In the most typical setting of ML:
 - we are given a set of inputs and outputs
 - we need to a program that automatically learns another "program" such that
 - it automatically "figures out" the "logic" of the program
 - given the example inputs can generate similar outputs
 - given unseen input, can generate "reasonable" output

Machine Learning Example - Classification

When should I play Tennis ????

Day	Outlook	Temperature	Humidity	Wind	PlayTennis
D1	Sunny	Hot	High	Weak	No
D2	Sunny	Hot	High	Strong	No
D3	Overcast	Hot	High	Weak	Yes
D4	Rain	Mild	High	Weak	Yes
D5	Rain	Cool	Normal	Weak	Yes
D6	Rain	Cool	Normal	Strong	No
D7	Overcast	Cool	Normal	Strong	Yes
D8	Sunny	Mild	High	Weak	No
D9	Sunny	Cool	Normal	Weak	Yes
D10	Rain	Mild	Normal	Weak	Yes
D11	Sunny	Mild	Normal	Strong	Yes
D12	Overcast	Mild	High	Strong	Yes
D13	Overcast	Hot	Normal	Weak	Yes
D14	Rain	Mild	High	Strong	No

Machine Learning Example - Classification

	Day	Outlook	Temperature	Humidity	Wind	PlayTennis
	D1	Sunny	Hot	High	Weak	No
	D2	Sunny	Hot	High	Strong	No
	D3	Overcast	Hot	High	Weak	Yes
	D4	Rain	Mild	High	Weak	Yes
	D5	Rain	Cool	Normal	Weak	Yes
	D6	Rain	Cool	Normal	Strong	No
	D7	Overcast	Cool	Normal	Strong	Yes
	D8	Sunny	Mild	$_{ m High}$	Weak	No
	D9	Sunny	Cool	Normal	Weak	Yes
	D10	Rain	Mild	Normal	Weak	Yes
6	D11	Sunnv	Mild	Normal	Strong	Yes
	D12	Overcast	Mild	High	Strong	Yes
	D13	Overcast	Hot	Normal	Weak	Yes
	D14	Rain	Mild	High	Strong	No

if Outlook == "Overcast":
 PlayTennis=Yes!!

Classification - What if it's Sunny or Rainy?

	Day	Outlook	Temperature	Humidity	Wind	PlayTennis
Γ	D1	Sunny	Hot	High	Weak	No
	D2	Sunny	Hot	High	Strong	No
+	D3	Overcast	Hot	High	Weak	Yes
	D4	Rain	Mild	High	Weak	Yes
	D5	Rain	Cool	Normal	Weak	Yes
	D6	Rain	Cool	Normal	Strong	No
\downarrow	D7	Overcast	Cool	Normal	Strong	Yes
	D8	Sunny	Mild	High	Weak	No
	D9	Sunny	Cool	Normal	Weak	Yes
	D10	Rain	Mild	Normal	Weak	Yes
	D11	Sunny	Mild	Normal	Strong	Yes
-	D12	Overcast	Mild	High	Strong	Yes
	D13	Overcast	Hot	Normal	Weak	Yes
3	D14	Rain	Mild	High	Strong	No

Observe the "Sunny" days

Day	Outlook	Temperature	Humidity	Wind	PlayTennis
D1	Sunny	Hot	High	Weak	No
D2	Sunny	Hot	High	Strong	No
D8	Sunny	Mild	High	Weak	No
D9	Sunny	Cool	Normal	Weak	Yes
D11	Sunny	Mild	Normal	Strong	Yes

Observe the "Sunny" days

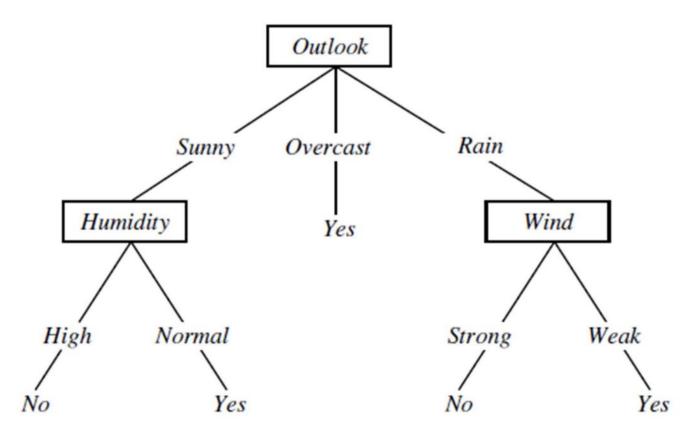
Day	Outlook	Temperature	Humidity	Wind	PlayTennis
D1	Sunny	Hot	High	Weak	No
D2	Sunny	Hot	High	Strong	No
D8	Sunny	Mild	High	Weak	No
D9	Sunny	Cool	Normal	Weak	Yes
D11	Sunny	Mild	Normal	Strong	Yes

```
if Outlook == "overcast":
    PlayTennis=Yes
elif Outlook == "Sunny" and Humidity == "High":
    PlayTennis=No
elif Outlook == "Sunny" and Humidity == "Normal":
    PlayTennis=Yes
```

Observe the days with "Rain"

Day	Outlook	Temperature	Humidity	Wind	PlayTennis
D4	Rain	Mild	High	Weak	Yes
D5	Rain	Cool	Normal	Weak	Yes
D6	Rain	Cool	Normal	Strong	No
D14	Rain	Mild	High	Strong	No

Decision Trees: Learned a "program" in the form of a tree



Learning Decision Trees: ID3

ID3(Examples, Target_attribute, Attributes)

Examples are the training examples. Target_attribute is the attribute whose value is to be predicted by the tree. Attributes is a list of other attributes that may be tested by the learned decision tree. Returns a decision tree that correctly classifies the given Examples.

- · Create a Root node for the tree
- If all Examples are positive, Return the single-node tree Root, with label = +
- If all Examples are negative, Return the single-node tree Root, with label = -
- If Attributes is empty, Return the single-node tree Root, with label = most common value of Target_attribute in Examples
- Otherwise Begin
 - $A \leftarrow$ the attribute from Attributes that best* classifies Examples
 - The decision attribute for $Root \leftarrow A$
 - For each possible value, v_i , of A,
 - Add a new tree branch below *Root*, corresponding to the test $A = v_i$
 - Let $Examples_{v_i}$ be the subset of Examples that have value v_i for A
 - If Examples_{vi} is empty
 - Then below this new branch add a leaf node with label = most common value of Target_attribute in Examples
 - Else below this new branch add the subtree
 ID3(Examples_{vi}, Target_attribute, Attributes {A}))

- End
- Return Root

Choosing The Best Attribute

- There are several different types of criteria
- We will briefly discuss one of them: Information Gain
- First we need to define a metric, Entropy
 - S is a sample of training examples
 - p_{\oplus} is the proportion of positive examples in S
 - p_{\ominus} is the proportion of negative examples in S
 - Entropy measures the impurity of S

$$Entropy(S) \equiv -p_{\oplus} \log_2 p_{\oplus} - p_{\ominus} \log_2 p_{\ominus}$$

- Entropy Is Zero (Minimum), When all the examples belong to same class!!!
- Entropy Is 1(Maximum), When there are equal number of positive and negative examples!

Entropy Example

To illustrate, suppose S is a collection of 14 examples of some boolean concept, including 9 positive and 5 negative examples (we adopt the notation [9+,5-] to summarize such a sample of data). Then the entropy of S relative to this boolean classification is

$$Entropy([9+, 5-]) = -(9/14) \log_2(9/14) - (5/14) \log_2(5/14)$$
$$= 0.940 \tag{3.2}$$

$$Entropy(S) \equiv \sum_{i=1}^{c} -p_i \log_2 p_i$$

Information Gain

$$Gain(S, A) \equiv Entropy(S) - \sum_{v \in Values(A)} \frac{|S_v|}{|S|} Entropy(S_v)$$

$$Values(Wind) = Weak, Strong$$

$$S = [9+, 5-]$$

$$S_{Weak} \leftarrow [6+, 2-]$$

$$S_{Strong} \leftarrow [3+, 3-]$$

$$Gain(S, Wind) = Entropy(S) - \sum_{v \in \{Weak, Strong\}} \frac{|S_v|}{|S|} Entropy(S_v)$$

$$= Entropy(S) - (8/14) Entropy(S_{Weak})$$

$$- (6/14) Entropy(S_{Strong})$$

$$= 0.940 - (8/14)0.811 - (6/14)1.00$$

$$= 0.048$$

- Gain "estimates" reduction of entropy
- We select the attribute with Maximum Gain

Classification Terminology

Feature Vector

Class Label

Day	Outlook	Temperature	Humidity	Wind	PlayTennis
D1	Sunny	Hot	High	Weak	No
D2	Sunny	Hot	High	Strong	No
D3	Overcast	Hot	High	Weak	Yes
D4	Rain	Mild	High	Weak	Yes
D5	Rain	Cool	Normal	Weak	Yes
D6	Rain	Cool	Normal	Strong	No
D7	Overcast	Cool	Normal	Strong	Yes
D8	Sunny	Mild	High	Weak	No
D9	Sunny	Cool	Normal	Weak	Yes
D10	Rain	Mild	Normal	Weak	Yes
D11	Sunny	Mild	Normal	Strong	Yes
D12	Overcast	Mild	High	Strong	Yes
D13	Overcast	Hot	Normal	Weak	Yes
D14	Rain	Mild	High	Strong	No

Classification - A bit more formally

Given a set, S of (x,y) pairs, find a function f(x) that predicts correct y values

- x: feature vector
- y: label
- f(x): classifier
- S: Dataset

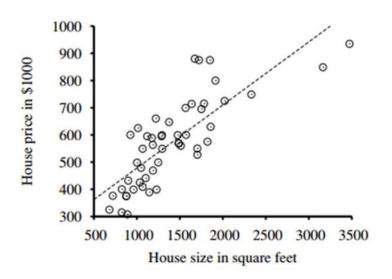
Machine Learning: Regression

House Area (sq. ft.)	Price (thousands)
1656	215
896	105
1329	172

• Given a set S of (x,y) pairs, find a function f(x) that returns good y values

Linear Regression

- "fits" a straight line
- The learned model is a "straight line"



```
def line(x):
    return mx + c
```

The training algorithm learns the weight "m" and bias "c"

find a "m" and "c" such that
sqrt((y-f(x))^2) is minimum.
=> "root mean squared error"

Univariate Linear Regression

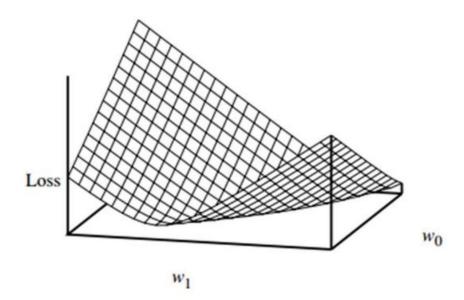
 A univariate linear function (a straight line) with input x and output y has the form

$$y = w1*x + w0,$$

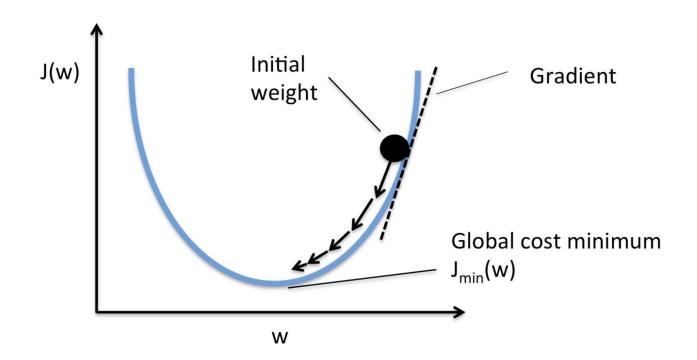
- o w0 and w1 are real-valued "weights" (c and m respectively from previous slide)
- Weight Vector: w = [w0, w1]
- Find the weight vector w` which minimizes the means squared error i.e., loss

$$\sum_{j=1}^{N} (y_j - (w_1 x_j + w_0))^2$$

Weight Space and Minimization



Gradient Descent

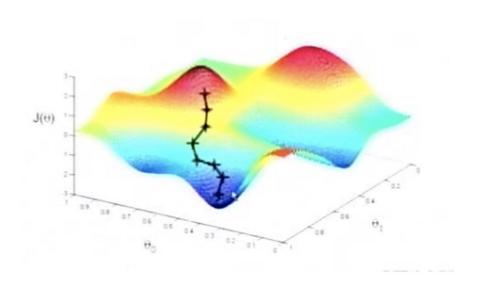


Gradient Descent

 $\mathbf{w} \leftarrow \text{any point in the parameter space}$ $\mathbf{loop} \text{ until convergence } \mathbf{do}$ $\mathbf{for \ each} \ w_i \ \mathbf{in \ w} \ \mathbf{do}$ $w_i \leftarrow w_i - \alpha \frac{\partial}{\partial w_i} Loss(\mathbf{w})$

alpha is the learning rate

Gradient Descent



Food for Thought

- How to evaluate how good your learned model is?
 - Train and Test set
- What if the Training Data is Noisy?
 - Problems of overfitting

Broad Types of Machine Learning

- Supervised Learning
 - Classification
 - Regression
- Unsupervised Learning
 - Clustering
 - Embeddings
- Reinforcement Learning
 - o e.g., Learning to solve games, e.g., Alpha Go

Acknowledgement of Resources

- Decision Tree Examples taken from Tom MItchell's book
- Regression Example: Russel & Norvig Chapter 18: 18.6.1,18.6.2
- Closed Form Solution for Linear Regression
 - https://towardsdatascience.com/normal-equation-in-python-the-closed-form-solution-for-linear-regression-13df33f9ad71